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Simulation of two-dimensional turbulent �ows in
a rotating annulus

Brian D. Storey∗
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SUMMARY

Rotating water tank experiments have been used to study fundamental processes of atmospheric and
geophysical turbulence in a controlled laboratory setting. When these tanks are undergoing strong rota-
tion the forced turbulent �ow becomes highly two dimensional along the axis of rotation. An e�cient
numerical method has been developed for simulating the forced quasi-geostrophic equations in an an-
nular geometry to model current laboratory experiments. The algorithm employs a spectral method with
Fourier series and Chebyshev polynomials as basis functions. The algorithm has been implemented on
a parallel architecture to allow modelling of a wide range of spatial scales over long integration times.
This paper describes the derivation of the model equations, numerical method, testing and performance
of the algorithm. Results provide reasonable agreement with the experimental data, indicating that such
computations can be used as a predictive tool to design future experiments. Copyright ? 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Under strong rotation, �uid �ows tend to become two dimensional along the axis of rotation
due to the in�uence of the Coriolis force. Two dimensionalization is expected when the �uid
vorticity is small compared to the rate of system rotation. Flows of atmospheres and oceans,
where structures are large and velocities slow, are often dominated by the Coriolis force [1].
In order to study the underlying processes of rotating two-dimensional �ows, numerous

lab experiments have been conducted in rapidly rotating tanks. This paper will focus on the
experimental apparatus at the University of Texas at Austin that has been used to generate
results found in References [2–8]. This particular experimental arrangement has been used to
generate two-dimensional jets and vortices that model atmospheric processes as well as mea-
sure statistics of two-dimensional turbulence. Past experiments were used to model eastward
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and westward atmospheric jets and long-lived vortices such as Jupiter’s Great Red Spot [2–4].
Current experiments have focused on computing the turbulent statistics of these nearly two-
dimensional �ows. For example, experimental results have shown evidence of a k−2 turbulent
energy spectrum rather than the typical k−5=3 Kolmogorov spectrum [5]. Other experiments
have shown success in predicting probability distribution functions using non-extensive statis-
tical mechanics [6]. We would like to use numerical simulation to complement experimental
results in order to develop a more complete understanding of these statistics. In addition to
using the numerical simulations to explain past results we would like to use the numerical
simulations to help design future laboratory set-ups by predicting system behaviour without
rebuilding the experimental apparatus.
The laboratory system consists of water inside an enclosed annular ring with a 10:8 cm

inner radius and 43:2 cm outer radius. The entire apparatus can be rotated up to 2:5 Hz. The
bottom of the tank has a sloping boundary (slope is −0:1) to simulate the e�ect of Coriolis
force varying with latitude in atmospheres [1]. The mean height of the tank is 18:7cm. Water
is pumped into and out of a series of small holes located along the bottom of the tank.
The vertical �ow from each of these holes couples directly to the Coriolis force to generate
vorticity in the rotation direction. As the vortices grow in strength they begin to advect each
other around the domain, undergoing vortex merger and decay—all the while remaining two
dimensional in the rotation direction.
To validate the numerical method we will compare the simulation to experimental results

obtained from two di�erent forcing con�gurations. The �rst con�guration has two rings of
holes that extend the circumference of the annulus. The inner ring at a radius of 18:9cm pumps
water into the closed tank and the outer ring at 35:1cm removes the water. Each ring has 120
holes where each hole is 0:25 cm in diameter. Experimental results of Reference [7] provide
data from this con�guration. This forcing con�guration results in a strong counter-rotating
jet (with respect to the tank rotation) that meanders around the annulus when observing the
�ow from the rotating frame. The second experiment has 120 holes in a single ring at the
mean radius of 27cm. One set of holes along a semi-circle are inlets and the other semi-circle
consists of outlets. Experimental results from this forcing con�guration have been documented
in Reference [8]. This semi-circle forcing results in a co-rotating jet along the centre of the
tank with counter-rotating jets at the inner and outer walls.
This paper will describe the derivation of the governing equations, the numerical method,

algorithm performance and sample simulation results. We �nd that the simulation can obtain
qualitative and quantitative agreement with the experimental results.

2. GOVERNING EQUATIONS

This section will review the governing equations that model the �ow in the annulus. The
interested reader should consult [1] for more complete details.
The conservation of momentum for the incompressible, constant viscosity �uid �ow is

Du
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+ fv=− 1
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where u; v and w are the velocity components in the three co-ordinate directions, �; r and
z. P is the pressure, � is the density of the �uid, � is the viscosity, D=Dt is the material
derivative and f is the Coriolis parameter (2� in the annulus). The rotation vector points
in the vertical direction (z) in this laboratory experiment. The vector operators ∇2 and u:∇u
(hidden in the material derivative) are written in cylindrical co-ordinates. The variable u is
used to denote the � component of the velocity since many simulations cast the annulus to a
two-dimensional strip, where the � direction is equivalent to the x direction in which is mean
�ow exists [9]. This notation for annular �ows has been used in previous studies [10].
We will reduce these equations to a simpler set by non-dimensionalizing the equations

and taking the limit of strong rotation. To non-dimensionalize the equations we use the sys-
tem radius, R, the characteristic �ow velocity, U0, and the time t0 =R=U0 as the scaling
parameters. When rotation rate is strong, it is known that the dominant balance in the equa-
tions occurs between the Coriolis force and the pressure. This balance can be con�rmed by
noting that large-scale streamlines on a weather map closely match isobars. Therefore, we
non-dimensionalize the pressure by the scale,

P0 =�fU0R (4)

Using this scaling and writing the equations in non-dimensional form yields

Ro
Du
Dt
+ v=−1

r
@P
@�
+
Ro
Re

(
∇2u− u

r2
+
2
r2
@v
@�

)
(5)

Ro
Dv
Dt

− u=−@P
@r
+
Ro
Re

(
∇2v− v

r2
− 2
r2
@u
@�

)
(6)

Ro
Dw
Dt

=−@P
@z
+
Ro
Re

∇2w (7)

where Re and Ro are the Reynolds (U0R=�) and Rossby (U0=fR) numbers. Knowing that in
turbulent �ows the Reynolds number is very large (104 in the lab, much larger in atmospheres)
we might be tempted to discard the viscous term. However, we will be interested in e�ects at
the inner and outer boundary during the laboratory experiments, and therefore will not discard
the viscous terms.
Under strong rotation the Rossby number is small, and therefore becomes the perturbation

parameter. Expanding the velocity �eld in a series using the Rossby number (i.e. u= u0+Ro u1)
and taking the zero Rossby number limit yields

v0 =−1
r
@P0
@�

(8)
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u0 =
@P0
@r

(9)

0 =−@P0
@z

(10)

It is easy to see that applying Equation (10) to Equations (8) and (9) demands that the
horizontal zero-order �ows (u0; v0) are constant in the z direction. The above equations also
show that the zero-order solution is divergence free in the r–� plane. Since the zeroth order
velocity in the horizontal plane is divergence free, the vertical velocity is invariant in the
vertical direction. The rigid walls at the upper and lower boundary implies that the zeroth
order vertical �ow is zero.
The zeroth order solution provides interesting information but does not allow us to solve

for the �ow velocities. To obtain the velocities we need to proceed to the next order and
collect terms of the order Ro as follows.
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where the notation D0=Dt means the material derivative using the zero-order velocities. Since
the zeroth order vertical velocity is zero, Equation (13) reduces to

0=−@P1
@z

(14)

Taking the derivative of Equations (11) and (12) with respect to z and using the fact that u0
and v0 do not depend on z and Equation (14) yields

@u1
@z
=0 (15)

@v1
@z
=0 (16)

The �rst-order horizontal velocities (just like the zeroth order) are invariant in the vertical
direction. Strong two dimensionalization along the rotation direction is con�rmed experimen-
tally by velocity measurements that show a very strong correlation in the vertical direction of
the highly turbulent �ow [7].
Taking the cross derivatives of the �rst-order momentum equations (Equations (11), (12))

yields the vorticity equation
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where the vorticity is de�ned as

!0 =
1
r
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(18)

To close the zeroth order vorticity equation we apply the conservation of mass to derive an
expression for the divergence in the r–� plane of the �rst-order velocity �eld.
The conservation of mass for the �uid at order Ro is

1
r
@u1
@�

+
1
r
@rv1
@r

+
@w1
@z

=0 (19)

We stated above that the horizontal velocities are invariant in the z-direction, therefore we
can integrate the continuity equation across the height of the annulus.(

1
r
@u1
@�

+
1
r
@rv1
@r

)
H
R
=(w1|z=0 − w1|z=H ) (20)

The annulus has vertical �ow that is imposed by the sloping lower boundary, Ekman pumping
at the upper and lower boundary, and the vertical forcing at the inlet=outlet holes. We now
turn to each of these terms individually.
Since the height of the water varies as a function of radius, �ow in the radial direction

drives vertical �ow. The vertical �ow due to the bottom topography is given as

w|z=0 = �v0 (21)

where � is the slope of the bottom. Note that the vertical velocity is imposed by the geometry.
The slope is assumed to be a small parameter on the order of the Rossby number (or smaller),
otherwise our particular scaling might break down. The laboratory value is �=−0:1.
In addition to the velocity from the sloping boundary, viscosity in the boundary layer is

known to cause a slight vertical velocity. This boundary layer vertical velocity is known as
Ekman pumping and the magnitude of the velocity is given by [1]

w|z=0 − w|z=H =!0
√
2�
fR2

=!0

√
2Ro
Re

(22)

Ekman pumping contributes a term at both the upper and lower boundary of equal magnitude
where the �ow is directed toward the centre height of the annulus. Whether or not an ‘e�ective’
viscosity is needed for capturing the turbulent Ekman pumping is considered in Section 4.4.
In addition to the Ekman velocity and the sloping bottom, there is also a vertical velocity

imposed by the forcing jets, Wf(r; �). The forcing velocity is localized in space at the holes
which are 0:25 cm in diameter. The vertical velocity may be too high for the scaling to be
valid (the vertical velocity is quite large), but we assume that the e�ect of the forcing is quite
localized and therefore the quasi-geostrophic (QG) approximation is valid. In the experiments,
the holes are only 0:25 cm in diameters while the vortices formed are several centimetres in
extent.
We sum the vertical velocity terms and substitute into Equation (20) to obtain(

1
r
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Note that in the above expression we must remember that w=w0 + Row1, which results in
the Ro term on the right-hand side of the equation.
The divergence of the horizontal velocity �eld (23) can be substituted into the vorticity

equation (17) to yield
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+ v0
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+
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)
+
�!0
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+
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=
1
Re

∇2!0 (24)

where �=
√
Re Ro=2 is the Ekman spin down time and �=R=H is the annulus aspect ratio.

Equation (24) is one speci�c form of QG equation. It is easy to verify that the vorticity is
related to the velocity through the streamfunction

∇2�0 =−!0 (25)

and the zeroth order velocity is related to the streamfunction in the usual manner. The bound-
ary conditions that we wish to impose are no slip and no-normal velocity at the inner and
outer wall of the annulus.
The QG equations are only valid in the limit of small Rossby number and the experiments

provide excellent data describing the departure from two dimensionality as the Rossby num-
ber increases [7]. Using the de�nition Ro=!rms=2�, the experiments demonstrated that the
Ro¡0:2 �ow is two dimensional while �ows with Ro¿0:3 begin to show signi�cant three-
dimensional e�ects. The slope of the bottom of the tank should be on the same order as the
Rossby number in order to keep consistent scaling for the vertical velocity.

2.1. Forcing approximation

The forcing of the �ow comes from a series of 120 small holes located at a �xed radius in
the annulus. If we consider the case where the forcing ring in the laboratory experiments is
located at 35 cm, then the forcing ring is 220 cm in circumference. Each of the forcing holes
in the laboratory are 0:25 cm in diameter. For the case of 1024 grid points in the simulation
the grid spacing is 0:2 cm at the outer forcing radius. Even at this very high resolution it
will be di�cult to achieve adequate resolution of individual vortices formed directly from the
forcing holes.
Since there cannot be complete resolution of the forcing scales we will use an approximation

developed by Marcus and Lee [10] that models the set of holes as a uniform forcing slit in
the � direction. Marcus and Lee [10] provide a formula for the width of the e�ective slit,

Lslit =
√
H
(

P
8�Nholes

)1=4( 1
f�

)1=8
(26)

where P (cm3=s) is the total pumping rate through the holes.

2.2. Summary

We summarize this section by writing the �nal form of the equations. We drop the 0 and 1
subscript notation for the vorticity and the streamfunction as we have only have zeroth order
terms after our manipulation. The governing equation for our system, where the ∇2 operator
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is in cylindrical co-ordinates are
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subject to the no-slip and non-penetrating boundary conditions
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Rout
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= 0 (31)

and

@�
@�

∣∣∣∣
Rout

= 0;
@�
@�

∣∣∣∣
Rin

= 0 (32)

3. DISCRETE APPROXIMATION

Equations (27)–(32) are numerically solved using a pseudo-spectral method. Spectral methods
use a set of basis functions to expand the spatial variation of the vorticity �eld. The method is
called pseudo-spectral for the treatment of the non-linear term. The standard pseudo-spectral
method of computing non-linear terms is to compute derivatives in spectral space and then
transform these result to physical space where the non-linearity is computed and then transform
that result back into spectral space. Our choice of basis functions are Fourier series in the
angular co-ordinate and Chebyshev polynomials in the radial [11].
In what follows we will typically be using a ‘mixed space’ formulation where the data

are expanded in Fourier series in the � direction and remain in physical space for the radial
direction:

!(rn; �; t)=
N�=2−1∑

m=−N�=2−1
!m(rn; t)eim� (33)

We will use the notation !m to refer to the mth radial function in the expansion. The sum of
these functions evaluated at the radial grid points (rn) provides all the information about the
�ow at a given time. The streamfunction �m is decomposed similarly.
With this expansion the derivatives are obtained analytically. To obtain the coe�cients for

the derivative with respect to � we simply multiply by the Fourier mode, i.e. @!m=@�= im!m.
To take derivatives in the radial direction we make use of the well-known recursion relation-
ship between the Chebyshev coe�cients and the coe�cients for the derivative. Since we will
work with the data in mixed space we will create a derivative matrix operator that combines
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the recursion relationship with the Chebyshev transform. The functions, !m, are vectors of
vorticity data at each collocation point for a given Fourier mode. The derivative matrix, D,
when operating on these vectors, returns the derivative of the function [12]. Numerical round-
o� error when using the Chebyshev derivative matrix is considered in Section 5. We note
that similar numerical formulations have been used in related work on rotating annular �ows
[10, 13, 14].

3.1. Boundary conditions

In the mixed Fourier-physical space representation our boundary conditions on the functions
from Equation (33) become

d�m(r)
dr

∣∣∣∣
Rout

= 0;
d�m(r)
dr

∣∣∣∣
Rin

= 0 (34)

and

im�m(Rout)= 0; im�m(Rin)= 0 (35)

We �nd that for the m=0 mode the latter boundary condition will always be satis�ed; we
require an additional equation to determine the value of �m=0.
The boundary condition for � is related to the mean �ow rate around the annulus (i.e. the

speed and width of the jet). We de�ne the mean �ow rate around the annulus as the mean �
velocity, integrated from the inner to the outer radius. Using the fact that only the m=0
Fourier mode corresponds to the mean in the � direction we de�ne the total �ow rate,
Q, to be

Q(t)=
∫ Rout

Rin

um=0 dr= −
∫ Rout

Rin

@�m=0
@r

dr=−�m=0(Rout) + �m=0(Rin) (36)

The streamfunction can only be determined up to a constant, therefore we can arbitrarily
de�ne the value of � to be zero at the inner boundary.

�m=0(Rout)=−Q; �m=0(Rin)= 0 (37)

The zeroth order velocity obeys the conservation of mass equation (refer back to Equations
(8)–(10))

imum=−@rvm
@r

(38)

In what follows we assume quantities refer to the zeroth order unless denoted with a subscript
1 to indicate that we are discussing �rst-order terms. For the m=0 mode, we �nd that the
radial velocity, v, is a constant. Since the radial boundary condition is impenetrable, the m=0
radial velocity is 0.
The conservation of mass equation for the �rst-order velocity, Equation (20), evaluated for

the m=0 mode becomes

1
r
@rv1; m=0
@r

= �(w1|z=0 − w1|z=H )m=0 (39)
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Using the expressions for the vertical velocity provided in the previous section the above
equation reduces to

1
r
@rv1; m=0
@r

=
�
Ro
Wf;m=0 +

�!m=0
�

(40)

which can be integrated to give

v1; m=0 =
�
r Ro

∫ r

Rin

r̃Wf;m=0 dr̃ +
�
r�

∫ r

Rin

r̃!m=0 dr̃ (41)

The � momentum equation (11) evaluated at the m=0 mode to provide the total �ow
around the annulus.
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+
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)
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+ v1; m=0 =
1
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@
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(
1
r
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@r
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which is rewritten as

@um=0
@t

+
(
1
r2
@r2uv
@r

)
m=0

+ v1; m=0 =
1
Re

@
@r

(
1
r
@rum=0
@r

)
(43)

where Equation (41) is used to evaluate the above expression for the �rst-order velocity.

4. TIME-STEP SCHEME

Now we discuss the procedure to solve the quasi-geostrophic equations in the annular geometry
with the boundary conditions described above. For convenience, let us rewrite the QG equation
in the following form:

@!
@t
=B+

1
Re

∇2! (44)

where the combination of non-linear, forcing and Ekman pumping terms are written as

B=−u
r
@!
@�

− v
(
@!
@r
+
��
Ro

)
− �Wf
Ro

− !�
�

(45)

We will solve Equation (44) using a fractional step scheme. We start each step by explicitly
integrating the non-linear term across the time step, updating the values of vorticity, and
follow by implicitly integrating the viscous di�usion operator. We use the Adams–Bashforth
technique for the non-linear step and the backward Euler method for the linear di�usion
step. We calculate B in Equation (45) using the pseudo-spectral approximation described in
Section 3.
We take the fractional step and integrate the non-linear and forcing components of vorticity

forward in time using the Adams–Bashforth technique

!k+1=2m =!km +
�t
2
(3Bkm − Bk−1m ) (46)

where k refers to the time step and 1
2 refers to the fractional step.
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Since integrating terms with ∇2 operators are unstable unless �t is very small, we use a
fully implicit backward Euler technique for stability

!k+1m −!k+1=2m

�t
=
1
Re

∇2!k+1m (47)

Equation (47) holds true for each Fourier mode, m, independently. Taking the di�usion step
requires the inversion of a Helmholtz-type operator at each time step, for each Fourier mode.
We can rewrite the equation such that all terms on the right-hand side are known and we
must solve for the current value of the vorticity function(

r
d
dr

(
r
d
dr

)
−m2 − r2 Re

�t

)
!k+1m = − Re

�t
r2!k+1=2m (48)

Once the vorticity is known we must invert a Poisson operator in order to �nd the stream-
function (

r
d
dr

(
r
d
dr

)
−m2

)
�k+1m =−r2!k+1m (49)

For each Fourier mode we must solve two, one-dimensional boundary value problems in the
radial direction.

4.1. Meeting boundary conditions

The di�culty with above vorticity-streamfunction formulations resides in the determination of
the boundary conditions for vorticity. All boundary conditions are supplied for the stream-
function, but we cannot invert Equation (48) without boundary conditions for the vorticity.
In order to satisfy all the boundary conditions on the streamfunction we will solve three
independent well-posed problems and take the sum in a way such that the proper bound-
ary conditions are imposed on the streamfunction. Further details of these decompositions in
streamfunction-vorticity formulations are given by Peyret [15].
We will say that the �nal solution is expressed as

�m= ��m + E1�1; m + E2�2; m (50)

and

!m= �!m + E1!1; m + E2!2; m (51)

where the coe�cients E1 and E2 are unknown. The m subscript reminds us that we must solve
this boundary value problem for each Fourier mode.
The ‘bar’ problem is de�ned as(

r
d
dr

(
r
d
dr

)
−m2 − r2 Re

�t

)
�!m=−Re

�t
r2!k+1=2m (52)

(
r
d
dr

(
r
d
dr

)
−m2

)
��m=−r2 �!m (53)
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with the Dirichlet boundary conditions

�!m(r=Rin)= 0; �!m(r=Rout)= 0 (54)

��m(r=Rin)= 0; ��m(r=Rout)= 0 (55)

��0(r=Rin)= 0; ��0(r=Rout)= −Q(t) (56)

The ‘1’ problem is de�ned as

(
r
d
dr

(
r
d
dr

)
−m2 − r2 Re

�t

)
!1; m =0 (57)

(
r
d
dr

(
r
d
dr

)
−m2

)
�1; m =−r2!1; m (58)

with the boundary conditions

!1; m(r=Rin)= 1; !1; m(r=Rout)= 0 (59)

�1; m(r=Rin)= 0; �1; m(r=Rout)= 0 (60)

The ‘2’ problem is de�ned as

(
r
d
dr

(
r
d
dr

)
−m2 − r2 Re

�t

)
!2; m =0 (61)

(
r
d
dr

(
r
d
dr

)
−m2

)
�2; m =−r2!2; m (62)

with the boundary conditions

!2; m(r=Rin)= 0; !2; m(r=Rout)= 1 (63)

�2; m(r=Rin)= 0; �2; m(r=Rout)= 0 (64)

We select coe�cients E1 and E2 in order to satisfy the Neumann condition on the stream-
function for each Fourier mode. Taking the derivative of the streamfunction and evaluating at
the inner and outer boundary yields two equations for the two unknown values of E1 and E2:

d�m
dr

=0=
d ��m
dr

∣∣∣∣∣
Rin

+ E1
d�1; m
dr

∣∣∣∣
Rin

+ E2
d�2; m
dr

∣∣∣∣
Rin

(65)

d�m
dr

=0=
d ��m
dr

∣∣∣∣∣
Rout

+ E1
d�1; m
dr

∣∣∣∣
Rout

+ E2
d�2; m
dr

∣∣∣∣
Rout

(66)

Once the unknown values of E are found the solution of the three problems may be
combined. Checking the de�nition of the ‘1’, ‘2’ and ‘bar’ problems shows that the �nal
result satis�es all the boundary conditions and equations. We also note that the solution of
the ‘1’ and ‘2’ problems can be done once at the beginning in a preprocessing step and stored
for the remainder of the simulation.
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4.2. Mean �ow; m=0 Fourier mode boundary condition

The solution of the m=0, �-momentum equation at each time step provides the current value
of the �ow rate, Q. This �ow rate is used as the boundary condition on the streamfunction
when solving the ‘bar’ problem. We follow the same time-stepping scheme that we applied
for the QG equation, namely the Adams–Bashforth step followed by backward Euler:

uk+1=20 = uk0 + v1; m=0 +
�t
2

(
3
1
r2
@r2uv
@r

k

− 1
r2
@r2uv
@r

k−1)
0

(67)

(
r2
d2

dr2
+ r

d
dr

− I − r2 Re
�t

)
uk+10 =−Re

�t
r2uk+1=20 (68)

In the above equation we use the subscript 0 to refer to the m=0 mode.
Equation (67) is solved at the beginning of the time step along with the other non-linear

terms. Once we solve Equation (68) with the boundary condition that u0 = 0 on both the inner
and outer radius we can integrate to compute the total �ow rate. We can then proceed with
solving the ‘bar’ problem where the �ow rate is used as the boundary condition for the m=0
streamfunction equation.

4.3. Matrix inversion: eigenvalue=vector decomposition

Each of the above problems (‘bar’, ‘1’, ‘2’ and m=0) involves the inversion of a Helmholtz
and Poisson-type operator. We will now detail the method of inverting the Helmholtz and
Poisson problems, these matrix inversion methods are outlined by Boyd [11].
Given the de�nitions of the Chebyshev transform and the recursion relation that exists

between coe�cients for the derivatives, we can write the Poisson and Helmholtz equations as
the matrix equations

(
	D	D − Re

�t
	2 −m2I

)
!m =−Re

�t
	2!m (69)

(	D	D −m2I)�m =−	2�m (70)

where D represents the �rst derivative matrix operator, I is the identity matrix, 	 is a diag-
onalized matrix that contains the radius at the collocation points and �m and !m are vectors
of the stream function and vorticity for Fourier mode, m. For the purposes of the remaining
discussion in this section we generalize Equations (70) and (69) as

(M −m2I)f = g (71)

where M is a matrix, and f and g are vectors (g is the known).
Before we invert this equation we will need to insert boundary conditions: note that in the

‘bar’, ‘1’ and ‘2’ problems we always enforce the value of the function, not the derivatives.
The standard way to insert boundary conditions is to overwrite the rows of the matrix that
set the values on the boundary, i.e. the �rst and last row of the matrix (M − m2I). The
reader should consult Trefethen [12] for details of inserting boundary conditions into matrix
operators.
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To invert the matrix equation e�ciently, we will use the Haidevogel–Zhang decomposition
[11]. This decomposition uses the fact that the matrices can be written as

M =E
E−1 (72)

where E is the matrix of eigenvectors corresponding to the diagonal matrix of eigenvalues,

. This decomposition allows Equation (71) to be written as

E(
−m2I)E−1f = g (73)

which reduces to

(
−m2I)E−1f =E−1g (74)

Finally, we can solve for f using

f =E(
−m2I)−1E−1g (75)

In this form, the eigenvector and eigenvalue matrices (E; 
 and E−1) are found once in a
preprocessing step for both the Poisson and Helmholtz operators. At each time step, f can
be found from a set of matrix vector-multiplications, an N 2 operation. Inverting the matrix
(
−m2I) is e�cient since this matrix is diagonal.

4.4. Turbulence model

One of the well-known di�culties with turbulence simulations is the impossibility of resolving
all the scales of motion in a high Reynolds number �ow. In 3D turbulence, energy is known
to follow a cascade to smaller scales; large eddies continually transfer their energy to smaller
eddies until reaching a size that molecular viscosity is e�ective. In 2D turbulence the dominant
energy cascade is to large scales; however, enstrophy cascades to smaller scales where it is
dissipated by molecular viscosity. In geophysical applications the length scale where molecular
viscosity is e�ective is several orders of magnitude smaller than the resolvable length scale
of the simulation and we have no choice but to truncate the small scales in the numerical
experiments. If we simply truncate the numerical approximation, the enstrophy cascade will
have no mechanism by which to dissipate and small-scale �ow structures will arti�cially
accumulate [16]. Typically a model for small-scale motions is added so that the turbulent
�ow equations can be solved without numerical blow-up. Many turbulence models have been
proposed for various di�erent �ows over the past several decades, for example, see Reference
[17].
We elect to employ one of the simplest and most common turbulence models in two-

dimensional simulations, hyperviscosity [17–21]. In a fully periodic simulation the hyper-
viscosity is mathematically equivalent to adding a high-order Laplacian to the governing
equations; i.e.

D!
Dt

=B+
1
Re

∇2!+ (−1)n+1�h(∇2)n! (76)

where �h is the coe�cient of hyperviscosity. In a fully periodic spectral simulation, the
hyperviscosity operator can be written as

(−1)n�h(∇2)n=−�h
( |k|
kmax

)2n
(77)
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where we have normalized the absolute value of two-dimensional wave number, |k|, by the
maximum wave number in the simulation kmax [18, 20, 21]. We solve the hyperviscous term
implicitly using the backward Euler method when implementing this term in our governing
equations. This integration method results in the following �lter for the coe�cients of the
two-dimensional Fourier transform

�kx; ky =
1

1 + �h(|k|=kmax)2n (78)

The hyperviscosity term acts like a low-pass �lter to damp the highest Fourier modes and
leave the lower modes unchanged.
When using a hyperviscous term with Chebyshev spectral methods, one would require ad-

ditional (and arti�cial) boundary conditions when solving Equation (76). To preserve the
boundary conditions we employ the method presented by Boyd [22] that maintains the prop-
erties of Laplacian-based hyperviscosity while not e�ecting the boundary conditions. Boyd’s
method uses a carefully selected and spatially dependent viscosity coe�cient that decays to
zero at the walls and therefore the method does not require additional boundary conditions.
The interested reader should consult [22] for details on the implementation of this method
of hyperviscosity; it is very similar to the expressions provided above for the fully periodic
�ow.
To determine the value for the power of the ‘Laplacian’ and the hyperviscosity coe�cient

we employ the method described in Reference [18] where the power and coe�cient are
determined by the �ow itself. The method is analogous to the Smagorinsky model for large
eddy simulation (LES) [17]. In the Smagorinsky model, the e�ective viscosity is related to
the local rate of strain in the �ow. We use the method discussed in Reference [18] to compute
a hyperviscosity coe�cient that is proportional to the volume averaged rate of strain. Smith’s
[18] method for determining the hyperviscosity coe�cient is similar to the method described
in Reference [19] that bases the magnitude of the hyperviscosity coe�cient on the root-mean-
squared vorticity or the method of Reference [20] that uses the time-step size as determined
by the Courant condition to obtain the hyperviscosity coe�cient. All three methods are using
the �ow to determine a characteristic time scale over which to ‘smooth’ the small-scale
�uctuations. The power for the hyperviscous term is adaptive according to the algorithm of
Reference [18], but is typically n=8 or higher.
The primary results of Section 6 were tested and found to be insensitive to the exact details

of the model. We tried �xed powers for the hyperviscous power and found that the conclusions
of this paper were reasonably insensitive to the choice; i.e. n=8 provided similar results as
the variable power method. The precise method of determining the hyperviscosity coe�cient
did not have a major impact on the general qualities of the solution. We independently tried
methods for determining the hyperviscous Reynolds number using the recommendations of
References [18–20]; which all base the magnitude of the hyperviscosity on a measure of
�ow time scale. We found that the general results of this paper were una�ected by the
precise algorithm used. Flows computed at di�erent spatial resolutions have similar large-
scale behaviours with our implemented method, indicating that the choice of hyperviscosity
is suitable for our �ows.
This simple hyperviscous �ltering model may not be acceptable; however, all two-dimens-

ional turbulence simulations must use some form of ‘turbulent viscosity’ [9]. In forced two-
dimensional �ows it is often assumed that there is not much in�uence of small-scale motions
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Plate 1. Snapshot of vorticity �elds at various times. Each forcing ring creates localized vorticity directly
above the inlet and outlet holes. In this con�guration, a sharp counter-rotating jet is formed between
the forcing rings and the large velocity gradient at the boundary of the jet causes the �ow to roll up
into a ring of vortices. These vortices then begin to advect each other around the domain and go fully
turbulent. The simulation is run for about 40 s of real time with about 10 seconds between snapshots
(with the �rst one occurring 10 seconds into the simulation). The tank is rotating at 1:75 Hz with a

pumping rate of 150 cm3=s. Simulations are performed on a 5122 grid.
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Plate 2. Snapshot of vorticity �elds at various times using the semi-circle forcing. The simulation is run
for about 135 seconds of real time with the snapshots taken at 8, 16, 45 and 135 seconds going left to
right then down. The tank is rotating at 1:75Hz with a pumping rate of 150 cm3=s in order to compare
to experiments. Simulations are performed on a 5122 grid. Large vortices are created at the transition
between sources and sinks. As in the experiment the beta-plane causes cyclones to move radially inward

and anti-cyclones to move radially outward.
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acting across the forcing scale and therefore any low-pass �lter is a reasonable closure model.
On the other hand, some researchers have noted serious errors with the hyperviscosity approach
that questions the validity of many two-dimensional turbulence simulations [23]; however,
these conclusions were based on a ∇4 damping. Ultimately, the validity of the turbulence
model in our �ow will be determined by the agreement with the experimental data.
In addition to using a turbulence closure model for the stability of the simulations, there

is also the question of whether a model for turbulent Ekman pumping is required; we used a
laminar result based on molecular viscosity in Equation (22). Early work by Ekman proposed
using an e�ective turbulent eddy-viscosity [24] and many models since have been proposed
and tested for the dissipation in turbulent Ekman layers [25]. In our case, we use the molecular
viscosity in the Ekman dissipation term for two reasons. One reason is that the experiments
validate that the �ow remains very two dimensional across the height of the annulus at the
small scales of our simulation [7]; therefore, the Ekman pumping based on a two-dimensional
�ow assumption is reasonably valid even at the small scales. The second practical reason
is that the Ekman spin down time is long (30 s) compared to the typical turnover time of
the vortices (1 s). In this experimental geometry, the Ekman dissipation has little impact
on the �nal results. The dissipation term is included in the formulation as it is crucial for
determining the steady-state size of vortices in atmospheric simulations where the geometry
of the boundary conditions does not set the size of vortices and jets [9].

5. ALGORITHM TESTING AND PERFORMANCE

The algorithm was tested on grids of di�erent resolutions: 256, 512 and 1024. Since the �ows
are fully turbulent and non-linear it is not expected that any deterministic solution is truly
meaningful on any grid (i.e. we cannot predict the weather very far in the future). Thus,
we cannot simply compare vorticity �elds at a given instant on di�erent grids and expect
them to be identical. We require that on di�erent grids the simulation can capture the same
statistical distributions, mean properties and the basic qualities of the �ow. To compare the
solutions on di�erent grids we use mean quantities (the strength of the jets created), the
transition time from a sharp jet to rolled-up vortices (we will see this in the results sec-
tion), the general qualities of the �ow (size of vortices and behaviour at the wall) and the
statistical distributions. We will discuss speci�c comparisons in Section 6. We found that
the simulation provides reliable results on all the grids tested. We do �nd �ner �lamentation
of vorticity and smaller vortices generated and ejected from the wall at higher resolution.
However, it seems that the basic transport of energy from the small-scale forcing to the large-
scale vortices that dominate the �ow are not heavily in�uenced by the amount of small-scale
dissipation.
Since the simulations we are performing require high resolution and long integration times,

we need the algorithms to scale e�ciently, both as the grid size is increased and the number
of processors is varied. The total algorithm is composed of various matrix operations: some
scale with the total system size (NrN�), the FFT of the entire data set scales as NrN� Log2(N�)
and the solving of the Poisson (and Helmholtz)-type equations scale as N�N 2r . The above
relations are only scalings, and the total algorithm cost will depend on how many of each
of these operations are done (i.e. how many Helmholtz, FFTs, etc). In Figure 1, we show
the normalized total computation time as the computational grid is increased: in this �gure
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Figure 1. Scaling of the algorithm as the system size is changed. The number of grid points is always
square in this �gure. We show actual data from single processor simulations and compare to scalings
expected from the FFT and the Helmholtz=Poisson solver. When the number of grid points is large
the algorithm is dominated by solving the Poisson and Helmholtz equations. This operation scales as

N�N 2r , or N 3 on the square grid.

the domain remains square (Nr =N�). We see that at �ne resolution, the algorithm time is
dominated by N 3 operations, as we would expect.
The algorithm has been implemented for parallel architectures using the message passing

interface (MPI) protocols [26]. The solution of the Helmholtz and Poisson equations are
independent for each Fourier mode, so we parallelize the data by giving each processor an
equal-sized set of Fourier modes to work with. This decomposition lets each processor work
independently when solving the Helmholtz=Poisson steps and perfect scaling is trivial to obtain.
Perfect scaling means that doubling the number of processors would half the total computation
time. We easily achieve perfect scaling on the most expensive part of the calculation. The only
step in the code that has any cross-processor communication is the FFT in the � direction.
Good parallel performance with this algorithm is possible since many packages codes exist
to perform the parallel FFT.
The use of Chebyshev derivative matrices can be susceptible to round-o� errors the

resolution is high [27]. Many round-o� error problems are con�ned to the calculation of
the derivative during the computation of the non-linear terms. We follow the recommenda-
tions of References [15, 27] to minimize the e�ect of round-o� error in the construction of
the derivative operator. We tested the computation of the derivative in the local computing
environment and found that typical relative errors were less than 10−8 when using these round
error control methods. In general, the e�ects of round-o� error are much less pronounced in
the solution of di�erential equations [15, 28]. Speci�cally, the computation of the eigenvalues
for use in the solution of the Helmholtz problem is not susceptible to round-o� error. The
precision of the computation of the eigenvalues is controlled by the condition number of the
eigenvector matrix not the condition of the second derivative matrix (i.e. the condition of
E not M in Equation (72)) [15]. The eigenvector matrix E is well conditioned. Again, the

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:231–252



SIMULATION OF 2D TURBULENT FLOWS IN A ROTATING ANNULUS 247

10 20 30 40
-25

-20

-15

-10

-5

0

V
 (

cm
/s

)

10 20 30 40
-25

-20

-15

-10

-5

0

10 20 30 40
-25

-20

-15

-10

-5

0

V
 (

cm
/s

)

r (cm)
10 20 30 40

-25

-20

-15

-10

-5

0

r (cm)

Figure 2. Mean radial velocity pro�les of the counter-rotating jet corresponding to the snapshots in
Plate 1. The jet �ows in the opposite direction of the tank rotation with a velocity of approximately
20 cm=s. Initially the jet is con�ned between the forcing rings. As the edge of the sharp jet becomes
unstable, the fully turbulent �ow encompasses the whole domain. Marcus and Lee [10] showed why
care must be taken when comparing the mean �ow pro�les; however, the simulation should reproduce

these basic �ow properties.

solution of the Helmholtz and Poisson problem was tested on several known solutions and
was con�rmed to have no signi�cant in�uence from round-o� error.

6. RESULTS

The objective of this section is to demonstrate typical results and show that the simulation
method is capable of capturing the dominant features of the experimental data. This paper is
primarily meant to present the methods, algorithms and early results of testing; more detailed
analysis of the comparisons between theory and experiment will be conducted in future work.

First we simulate the data from the counter-rotating jet con�guration [7]. In this experiment,
�uid is pumped into the domain at an inner forcing ring and removed at the outer forcing
ring. The inner ring is located at a radius of 18:9 cm and the outer ring is located at 35:1 cm.
The rotation rate of the tank is 1:75 Hz with a pumping rate of 150 cm3=s. The simulation
is run for about 40 s; 70 rotations of the tank. Some sample results from these simulations
are shown in Plate 1 and Figure 2. The conditions were selected to match the documented
experimental data [7].
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The vertical �ow at the inlets generates anti-cyclonic vorticity while the vertical �ow at
the outlets generates cyclonic vorticity. The localized vorticity above the forcing creates a
strong counter-rotating jet between the inner and outer ring. The large velocity gradients that
initially develop at the edge of the jet are unstable and roll up into the vortex rings as seen
in the �rst snapshot of Plate 1. The development of the most unstable mode in these jets is
discussed in detail by Marcus and Lee [10]. Our simulations go beyond this previous work
and capture the development, dynamics and eventual steady state of the turbulent �ow.
Plate 1 shows instantaneous vorticity �elds at di�erent times and Figure 2 shows the mean

�ow of the jet as a function of radius at the corresponding times. At early times we �nd that
the jet is con�ned between the forcing rings. As the sharp velocity gradient goes unstable,
vortices roll up at the interface. The turbulent vorticity �elds in the simulation have many of
the same qualities as the experimental results. Long-lived cyclones stay in the outer region of
the annulus where they have the same sign as the background shear. Marcus [29] showed that
QG vortices must have the same sign vorticity as their background shear otherwise they are
quickly dissipated. For the same reason the inner part of the annulus is dominated by anti-
cyclones. The magnitude of the jet velocity agrees with the experimentally recorded values
of 20 cm=s.
We also �nd that small vortices are generated at the wall when large coherent vortices

sweep by. These small vortices are injected into the �ow where they merge with like-signed
vortices. Sequences of vorticity images show that cyclones generated at the inner boundary
and are ejected across the jet to the outer part of the annulus where they are stable. These
processes were also observed experimentally and explained extensively in the work of Baroud
et al. [7] as an example of non-local (in wave number sense) energy transfer. The simulation
demonstrates the ejection of vortices at the wall and their migration into the bulk �ow.
In addition to the mean and qualitative properties of the �ow, the simulation may be also

used to predict the turbulent statistics of the counter-rotating jet. Figure 3 shows normalized
velocity di�erence probability distribution function (PDF) for di�erent separations [17]. The
simulated ‘measurements’ are taken along the �ow centreline to emulate the experimental
hot-�lm measurements. The simulated statistics are in good agreement with the experimental
results [7]. The fact that the experimental PDF for di�erent spacings normalize to a single
curve was used as evidence for two-dimensional, self-similar �ow. The agreement between the
experiments and simulations helps to demonstrate that the strength and frequency of the turbu-
lent vortices are well modelled by our simulations. The non-Gaussian tails on the distribution
are a result of coherent vortices [30].
Next we demonstrate a di�erent con�guration of forcing holes to simulate the experimental

data of Aubert et al. [8]. The forcing ring is now centred between the inner and outer radius.
The lower half (semi-circle) of the forcing ring is taken to be inlets while the upper half is
taken to be outlets. This forcing con�guration results in a �ow with three robust zonal �ows:
a co-rotating jet is located along the centre where the forcing occurs and two counter-rotating
jets are located along the inner and outer radius of the annulus.
Plate 2 shows vorticity �elds at di�erent instances in times while Figure 4 shows the mean

velocity as a function of radius. Early in the simulation we see a large cyclone and anti-
cyclone form at the locations where the forcing transitions from sources to sinks. The sloping
lower boundary (beta-e�ect) tends to push the cyclone inward and the anti-cyclone outward.
While strong cyclones occasionally venture toward the outer radius, on average cyclones spend
much more time near the inner radius where their existence is stable. The magnitude of the
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Figure 3. Normalized probability distribution function of velocity di�erences taken along the centreline
from the counter-rotating con�guration. The simulated data is presented to match Figure 8 of Refer-
ence [7]; good quantitative agreement exists between the simulated and experimental PDF. The �gure
is displaying the normalized PDFs computed at separations of 2.3, 4.6, 9.2, 12.7 and 17:3 cm. The

simulated data is taken from the con�guration of Plate 1 and Figure 2.

zonal velocities agrees well with the reported experimental data [8] of approximately 2 cm=s.
As with the previous con�guration the simulated properties of the jet �ow agree with the
experimental observations.
Figure 5 compares the simulated PDF of vorticity in the semi-circle forced �ow to a

theory based on non-extensive statistical mechanics. This theory has been shown to predict
the experimental data quite well. The experimental probability density functions show broad
tails with signi�cant departure from Gaussian statistics [6]. Our simulations show quantitative
agreement with the experimental results, with the exception of a slight asymmetry in the
distribution toward anti-cyclones. The quality of the simulated statistics are limited by the
relatively short run times of numerical experiments—it is di�cult to assess if the asymmetry
in the data is due only to poor statistics. In future work, we hope to run longer simulations
and conduct more detailed comparisons of the simulated statistical behaviour. The agreement
with the experimental statistical data demonstrates the quantitative utility of the simulation
results.
In the cases presented thus far we can compute the Rossby number of the �nal �ow �eld

to verify that the simulation is consistent with the QG approximation. Baroud et al. [7]
used the de�nition of Ro≡!rms=2� to classify the two dimensionality of the �ows. Using
this de�nition, our simulation predicts Ro∼ 0:12 in the counter-rotating jet con�guration and
Ro∼ 0:08 in the semi-circle forcing. These Rossby numbers are consistent with experimental
�ndings and place the �ow in the two-dimensional, quasi-geostrophic regime [7].
We tested the results of presented herein on a lower resolution grid (256) as well as tested

a short period of the simulations with a higher resolution (1024). The �rst snapshot in Plate 1
appears the same for the three di�erent grid resolutions, with some noticeable di�erences in
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Figure 4. Mean velocity pro�les with the semi-circle forcing corresponding to the instances shown in
Plate 2. The forcing creates three zones with velocities on the order of 1–2 cm=s. The co-rotating
jet is centred at the forcing ring. Anticyclones prefer the outer half of the annulus while cy-
clones prefer the inner half where the vortices are stable to the background shear. The pro�les

agree with the experimental data.

the vorticity �eld developing by the second image. As the �ow becomes fully turbulent by
the third image, the 256 and 512 solutions depart when comparing the instantaneous vorticity
�elds (the 1024 was not integrated for this long period). However, the bulk properties of
the �ow are preserved; vortices have similar sizes, mean �ows are the same and turbulent
statistics are well captured. The results presented in this section are the same when generated
by the 256 resolution simulation. We �nd that the higher resolution simulations provide more
vorticity �lamentation and capture more detailed vorticity structure generated at the wall.
Owing to the time it takes to evolve to a turbulent steady state, it is not practical to run
1024 grid calculations to collect statistics. The results of the testing indicated that a 512 grid
is adequate for these simulations. The good comparisons between the simulations and the
experiments presented in this section validate that the simulations are robust in capturing the
features of interest; despite the limitations of the hyperviscosity model.

7. CONCLUSIONS

We have developed an algorithm for solving the two-dimensional quasi-geostrophic equations
on parallel architectures using MPI. The numerical simulations are modelling laboratory
experiments in order to understand basic turbulent processes in rotating �ows. The algorithm
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Figure 5. Comparisons of the vorticity probability distribution function of the simulation (points) and
a theory based on a non-extensive statistical mechanics. The theory was shown to predict experimen-
tal data (solid) extremely well [6]. We also show the extensive (or Gaussian) �t to the simulated
data for comparison. The simulated data agrees well with the non-extensive �t; however, the simu-
lation shows a slight asymmetry to anti-cyclones that was not present in the experimental data. The

simulated data is taken from the semi-circle forcing of Plate 2 and Figure 4.

has been developed and tested yielding results in good agreement with experimental data.
These results indicate that the simulation will be useful in predicting laboratory results before
making system changes. We hope to use such computations to design future experiments that
will demonstrate di�erent zonal �ow behaviours.
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